Utilizing nanobody technology to target non-immunodominant domains of VAR2CSA

Research output: Contribution to journalJournal articleResearchpeer-review

Standard

Utilizing nanobody technology to target non-immunodominant domains of VAR2CSA. / Ditlev, Sisse B; Florea, Raluca; Nielsen, Morten A; Theander, Thor G; Magez, Stefan; Boeuf, Philippe; Salanti, Ali.

In: PLOS ONE, Vol. 9, No. 1, 21.01.2014, p. e84981.

Research output: Contribution to journalJournal articleResearchpeer-review

Harvard

Ditlev, SB, Florea, R, Nielsen, MA, Theander, TG, Magez, S, Boeuf, P & Salanti, A 2014, 'Utilizing nanobody technology to target non-immunodominant domains of VAR2CSA', PLOS ONE, vol. 9, no. 1, pp. e84981. https://doi.org/10.1371/journal.pone.0084981

APA

Ditlev, S. B., Florea, R., Nielsen, M. A., Theander, T. G., Magez, S., Boeuf, P., & Salanti, A. (2014). Utilizing nanobody technology to target non-immunodominant domains of VAR2CSA. PLOS ONE, 9(1), e84981. https://doi.org/10.1371/journal.pone.0084981

Vancouver

Ditlev SB, Florea R, Nielsen MA, Theander TG, Magez S, Boeuf P et al. Utilizing nanobody technology to target non-immunodominant domains of VAR2CSA. PLOS ONE. 2014 Jan 21;9(1):e84981. https://doi.org/10.1371/journal.pone.0084981

Author

Ditlev, Sisse B ; Florea, Raluca ; Nielsen, Morten A ; Theander, Thor G ; Magez, Stefan ; Boeuf, Philippe ; Salanti, Ali. / Utilizing nanobody technology to target non-immunodominant domains of VAR2CSA. In: PLOS ONE. 2014 ; Vol. 9, No. 1. pp. e84981.

Bibtex

@article{8ecdca83acad4d6d87efef5a76c93f87,
title = "Utilizing nanobody technology to target non-immunodominant domains of VAR2CSA",
abstract = "Placental malaria is a major health problem for both pregnant women and their fetuses in malaria endemic regions. It is triggered by the accumulation of Plasmodium falciparum-infected erythrocytes (IE) in the intervillous spaces of the placenta and is associated with foetal growth restriction and maternal anemia. IE accumulation is supported by the binding of the parasite-expressed protein VAR2CSA to placental chondroitin sulfate A (CSA). Defining specific CSA-binding epitopes of VAR2CSA, against which to target the immune response, is essential for the development of a vaccine aimed at blocking IE adhesion. However, the development of a VAR2CSA adhesion-blocking vaccine remains challenging due to (i) the large size of VAR2CSA and (ii) the extensive immune selection for polymorphisms and thereby non-neutralizing B-cell epitopes. Camelid heavy-chain-only antibodies (HcAbs) are known to target epitopes that are less immunogenic to classical IgG and, due to their small size and protruding antigen-binding loop, able to reach and recognize cryptic, conformational epitopes which are inaccessible to conventional antibodies. The variable heavy chain (VHH) domain is the antigen-binding site of camelid HcAbs, the so called Nanobody, which represents the smallest known (15 kDa) intact, native antigen-binding fragment. In this study, we have used the Nanobody technology, an approach new to malaria research, to generate small and functional antibody fragments recognizing unique epitopes broadly distributed on VAR2CSA.",
author = "Ditlev, {Sisse B} and Raluca Florea and Nielsen, {Morten A} and Theander, {Thor G} and Stefan Magez and Philippe Boeuf and Ali Salanti",
year = "2014",
month = jan,
day = "21",
doi = "10.1371/journal.pone.0084981",
language = "English",
volume = "9",
pages = "e84981",
journal = "PLoS ONE",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "1",

}

RIS

TY - JOUR

T1 - Utilizing nanobody technology to target non-immunodominant domains of VAR2CSA

AU - Ditlev, Sisse B

AU - Florea, Raluca

AU - Nielsen, Morten A

AU - Theander, Thor G

AU - Magez, Stefan

AU - Boeuf, Philippe

AU - Salanti, Ali

PY - 2014/1/21

Y1 - 2014/1/21

N2 - Placental malaria is a major health problem for both pregnant women and their fetuses in malaria endemic regions. It is triggered by the accumulation of Plasmodium falciparum-infected erythrocytes (IE) in the intervillous spaces of the placenta and is associated with foetal growth restriction and maternal anemia. IE accumulation is supported by the binding of the parasite-expressed protein VAR2CSA to placental chondroitin sulfate A (CSA). Defining specific CSA-binding epitopes of VAR2CSA, against which to target the immune response, is essential for the development of a vaccine aimed at blocking IE adhesion. However, the development of a VAR2CSA adhesion-blocking vaccine remains challenging due to (i) the large size of VAR2CSA and (ii) the extensive immune selection for polymorphisms and thereby non-neutralizing B-cell epitopes. Camelid heavy-chain-only antibodies (HcAbs) are known to target epitopes that are less immunogenic to classical IgG and, due to their small size and protruding antigen-binding loop, able to reach and recognize cryptic, conformational epitopes which are inaccessible to conventional antibodies. The variable heavy chain (VHH) domain is the antigen-binding site of camelid HcAbs, the so called Nanobody, which represents the smallest known (15 kDa) intact, native antigen-binding fragment. In this study, we have used the Nanobody technology, an approach new to malaria research, to generate small and functional antibody fragments recognizing unique epitopes broadly distributed on VAR2CSA.

AB - Placental malaria is a major health problem for both pregnant women and their fetuses in malaria endemic regions. It is triggered by the accumulation of Plasmodium falciparum-infected erythrocytes (IE) in the intervillous spaces of the placenta and is associated with foetal growth restriction and maternal anemia. IE accumulation is supported by the binding of the parasite-expressed protein VAR2CSA to placental chondroitin sulfate A (CSA). Defining specific CSA-binding epitopes of VAR2CSA, against which to target the immune response, is essential for the development of a vaccine aimed at blocking IE adhesion. However, the development of a VAR2CSA adhesion-blocking vaccine remains challenging due to (i) the large size of VAR2CSA and (ii) the extensive immune selection for polymorphisms and thereby non-neutralizing B-cell epitopes. Camelid heavy-chain-only antibodies (HcAbs) are known to target epitopes that are less immunogenic to classical IgG and, due to their small size and protruding antigen-binding loop, able to reach and recognize cryptic, conformational epitopes which are inaccessible to conventional antibodies. The variable heavy chain (VHH) domain is the antigen-binding site of camelid HcAbs, the so called Nanobody, which represents the smallest known (15 kDa) intact, native antigen-binding fragment. In this study, we have used the Nanobody technology, an approach new to malaria research, to generate small and functional antibody fragments recognizing unique epitopes broadly distributed on VAR2CSA.

U2 - 10.1371/journal.pone.0084981

DO - 10.1371/journal.pone.0084981

M3 - Journal article

C2 - 24465459

VL - 9

SP - e84981

JO - PLoS ONE

JF - PLoS ONE

SN - 1932-6203

IS - 1

ER -

ID: 98579849