A snapshot of the prevalence of dihydropteroate synthase-431V mutation and other sulfadoxine-pyrimethamine resistance markers in Plasmodium falciparum isolates in Nigeria

Research output: Contribution to journalJournal articleResearchpeer-review

Standard

A snapshot of the prevalence of dihydropteroate synthase-431V mutation and other sulfadoxine-pyrimethamine resistance markers in Plasmodium falciparum isolates in Nigeria. / Adegbola, Adebanjo J; Ijarotimi, Omotade A; Ubom, Akaninyene E; Adesoji, Bukola A; Babalola, Olajide E; Hocke, Emma F; Hansson, Helle; Mousa, Andria; Bolaji, Oluseye O; Alifrangis, Michael; Roper, Cally.

In: Malaria Journal, Vol. 22, 71, 2023.

Research output: Contribution to journalJournal articleResearchpeer-review

Harvard

Adegbola, AJ, Ijarotimi, OA, Ubom, AE, Adesoji, BA, Babalola, OE, Hocke, EF, Hansson, H, Mousa, A, Bolaji, OO, Alifrangis, M & Roper, C 2023, 'A snapshot of the prevalence of dihydropteroate synthase-431V mutation and other sulfadoxine-pyrimethamine resistance markers in Plasmodium falciparum isolates in Nigeria', Malaria Journal, vol. 22, 71. https://doi.org/10.1186/s12936-023-04487-5

APA

Adegbola, A. J., Ijarotimi, O. A., Ubom, A. E., Adesoji, B. A., Babalola, O. E., Hocke, E. F., Hansson, H., Mousa, A., Bolaji, O. O., Alifrangis, M., & Roper, C. (2023). A snapshot of the prevalence of dihydropteroate synthase-431V mutation and other sulfadoxine-pyrimethamine resistance markers in Plasmodium falciparum isolates in Nigeria. Malaria Journal, 22, [71]. https://doi.org/10.1186/s12936-023-04487-5

Vancouver

Adegbola AJ, Ijarotimi OA, Ubom AE, Adesoji BA, Babalola OE, Hocke EF et al. A snapshot of the prevalence of dihydropteroate synthase-431V mutation and other sulfadoxine-pyrimethamine resistance markers in Plasmodium falciparum isolates in Nigeria. Malaria Journal. 2023;22. 71. https://doi.org/10.1186/s12936-023-04487-5

Author

Adegbola, Adebanjo J ; Ijarotimi, Omotade A ; Ubom, Akaninyene E ; Adesoji, Bukola A ; Babalola, Olajide E ; Hocke, Emma F ; Hansson, Helle ; Mousa, Andria ; Bolaji, Oluseye O ; Alifrangis, Michael ; Roper, Cally. / A snapshot of the prevalence of dihydropteroate synthase-431V mutation and other sulfadoxine-pyrimethamine resistance markers in Plasmodium falciparum isolates in Nigeria. In: Malaria Journal. 2023 ; Vol. 22.

Bibtex

@article{e762dfc52a7c455b91929d0cb3fca8c7,
title = "A snapshot of the prevalence of dihydropteroate synthase-431V mutation and other sulfadoxine-pyrimethamine resistance markers in Plasmodium falciparum isolates in Nigeria",
abstract = "BACKGROUND: Malaria is a major public health issue with substantial risks among vulnerable populations. Currently, the World Health Organization (WHO) recommends SP-IPTp in the second and third trimesters. However, the efficacy of SP-IPTp is threatened by the emergence of sulfadoxine-pyrimethamine resistant malaria parasites due to single nucleotide polymorphisms in the Plasmodium falciparum dihydrofolate reductase and dihydropteroate synthetase genes. This study aimed to assess the current prevalence of Pfdhfr/Pfdhps mutations in P. falciparum isolates collected from individuals residing in Ile-Ife, Nigeria, and also present maps of the prevalence of Pfdhps 431V and 581G within Nigeria and surrounding countries.METHODS: Between October 2020 and April 2021, samples were collected as dried blood spots among 188 participants who showed malaria positivity with a histidine-rich-protein-based rapid diagnostic test (RDT). Nested PCR assays were used to confirm falciparum in the samples with RDT positivity, and to amplify fragments of the Pfdhfr/Pfdhps genes followed by targeted amplicon sequencing. Published data since 2007 on the prevalence of the Pfdhps genotypes in Nigeria and the neighbouring countries were used to produce maps to show the distribution of the mutant genotypes.RESULTS: Only 74 and 61 samples were successfully amplified for the Pfdhfr and Pfdhps genes, respectively. At codons resulting in N51I, C59R, and S108N, Pfdhfr carried mutant alleles of 97.3% (72/74), 97.3% (72/74) and 98.6% (73/74), respectively. The Pfdhps gene carried mutations at codons resulting in amino acid changes at 431-436-437-540-581-613; I431V [45.9%, (28/61)], A581G [31.1% (19/61)] and A613S [49.2% (30/61)]. Constructed haplotypes were mainly the triple Pfdhfr mutant 51I-59R-108N (95.9%), and the most common haplotypes observed for the Pfdhps gene were the ISGKAA (32.8%), ISGKGS (8.2%), VAGKAA (14.8%), VAGKAS (9.8%) and VAGKGS (14.8%). In the context of the previously published data, a high prevalence of 431V/581G mutations was found in the study population. It seems quite evident that the Pfdhps 431V, 581G and 613S often co-occur as Pfdhps-VAGKGS haplotype.CONCLUSION: This study showed that the prevalence of VAGKGS haplotype seems to be increasing in prevalence. If this is similar in effect to the emergence of 581G in East Africa, the efficacy of SP-IPTp in the presence of these novel Pfdhps mutants should be re-assessed.",
keywords = "Humans, Dihydropteroate Synthase, Plasmodium falciparum, Nigeria, Prevalence, Malaria, Falciparum",
author = "Adegbola, {Adebanjo J} and Ijarotimi, {Omotade A} and Ubom, {Akaninyene E} and Adesoji, {Bukola A} and Babalola, {Olajide E} and Hocke, {Emma F} and Helle Hansson and Andria Mousa and Bolaji, {Oluseye O} and Michael Alifrangis and Cally Roper",
note = "{\textcopyright} 2023. The Author(s).",
year = "2023",
doi = "10.1186/s12936-023-04487-5",
language = "English",
volume = "22",
journal = "Malaria Journal",
issn = "1475-2875",
publisher = "BioMed Central",

}

RIS

TY - JOUR

T1 - A snapshot of the prevalence of dihydropteroate synthase-431V mutation and other sulfadoxine-pyrimethamine resistance markers in Plasmodium falciparum isolates in Nigeria

AU - Adegbola, Adebanjo J

AU - Ijarotimi, Omotade A

AU - Ubom, Akaninyene E

AU - Adesoji, Bukola A

AU - Babalola, Olajide E

AU - Hocke, Emma F

AU - Hansson, Helle

AU - Mousa, Andria

AU - Bolaji, Oluseye O

AU - Alifrangis, Michael

AU - Roper, Cally

N1 - © 2023. The Author(s).

PY - 2023

Y1 - 2023

N2 - BACKGROUND: Malaria is a major public health issue with substantial risks among vulnerable populations. Currently, the World Health Organization (WHO) recommends SP-IPTp in the second and third trimesters. However, the efficacy of SP-IPTp is threatened by the emergence of sulfadoxine-pyrimethamine resistant malaria parasites due to single nucleotide polymorphisms in the Plasmodium falciparum dihydrofolate reductase and dihydropteroate synthetase genes. This study aimed to assess the current prevalence of Pfdhfr/Pfdhps mutations in P. falciparum isolates collected from individuals residing in Ile-Ife, Nigeria, and also present maps of the prevalence of Pfdhps 431V and 581G within Nigeria and surrounding countries.METHODS: Between October 2020 and April 2021, samples were collected as dried blood spots among 188 participants who showed malaria positivity with a histidine-rich-protein-based rapid diagnostic test (RDT). Nested PCR assays were used to confirm falciparum in the samples with RDT positivity, and to amplify fragments of the Pfdhfr/Pfdhps genes followed by targeted amplicon sequencing. Published data since 2007 on the prevalence of the Pfdhps genotypes in Nigeria and the neighbouring countries were used to produce maps to show the distribution of the mutant genotypes.RESULTS: Only 74 and 61 samples were successfully amplified for the Pfdhfr and Pfdhps genes, respectively. At codons resulting in N51I, C59R, and S108N, Pfdhfr carried mutant alleles of 97.3% (72/74), 97.3% (72/74) and 98.6% (73/74), respectively. The Pfdhps gene carried mutations at codons resulting in amino acid changes at 431-436-437-540-581-613; I431V [45.9%, (28/61)], A581G [31.1% (19/61)] and A613S [49.2% (30/61)]. Constructed haplotypes were mainly the triple Pfdhfr mutant 51I-59R-108N (95.9%), and the most common haplotypes observed for the Pfdhps gene were the ISGKAA (32.8%), ISGKGS (8.2%), VAGKAA (14.8%), VAGKAS (9.8%) and VAGKGS (14.8%). In the context of the previously published data, a high prevalence of 431V/581G mutations was found in the study population. It seems quite evident that the Pfdhps 431V, 581G and 613S often co-occur as Pfdhps-VAGKGS haplotype.CONCLUSION: This study showed that the prevalence of VAGKGS haplotype seems to be increasing in prevalence. If this is similar in effect to the emergence of 581G in East Africa, the efficacy of SP-IPTp in the presence of these novel Pfdhps mutants should be re-assessed.

AB - BACKGROUND: Malaria is a major public health issue with substantial risks among vulnerable populations. Currently, the World Health Organization (WHO) recommends SP-IPTp in the second and third trimesters. However, the efficacy of SP-IPTp is threatened by the emergence of sulfadoxine-pyrimethamine resistant malaria parasites due to single nucleotide polymorphisms in the Plasmodium falciparum dihydrofolate reductase and dihydropteroate synthetase genes. This study aimed to assess the current prevalence of Pfdhfr/Pfdhps mutations in P. falciparum isolates collected from individuals residing in Ile-Ife, Nigeria, and also present maps of the prevalence of Pfdhps 431V and 581G within Nigeria and surrounding countries.METHODS: Between October 2020 and April 2021, samples were collected as dried blood spots among 188 participants who showed malaria positivity with a histidine-rich-protein-based rapid diagnostic test (RDT). Nested PCR assays were used to confirm falciparum in the samples with RDT positivity, and to amplify fragments of the Pfdhfr/Pfdhps genes followed by targeted amplicon sequencing. Published data since 2007 on the prevalence of the Pfdhps genotypes in Nigeria and the neighbouring countries were used to produce maps to show the distribution of the mutant genotypes.RESULTS: Only 74 and 61 samples were successfully amplified for the Pfdhfr and Pfdhps genes, respectively. At codons resulting in N51I, C59R, and S108N, Pfdhfr carried mutant alleles of 97.3% (72/74), 97.3% (72/74) and 98.6% (73/74), respectively. The Pfdhps gene carried mutations at codons resulting in amino acid changes at 431-436-437-540-581-613; I431V [45.9%, (28/61)], A581G [31.1% (19/61)] and A613S [49.2% (30/61)]. Constructed haplotypes were mainly the triple Pfdhfr mutant 51I-59R-108N (95.9%), and the most common haplotypes observed for the Pfdhps gene were the ISGKAA (32.8%), ISGKGS (8.2%), VAGKAA (14.8%), VAGKAS (9.8%) and VAGKGS (14.8%). In the context of the previously published data, a high prevalence of 431V/581G mutations was found in the study population. It seems quite evident that the Pfdhps 431V, 581G and 613S often co-occur as Pfdhps-VAGKGS haplotype.CONCLUSION: This study showed that the prevalence of VAGKGS haplotype seems to be increasing in prevalence. If this is similar in effect to the emergence of 581G in East Africa, the efficacy of SP-IPTp in the presence of these novel Pfdhps mutants should be re-assessed.

KW - Humans

KW - Dihydropteroate Synthase

KW - Plasmodium falciparum

KW - Nigeria

KW - Prevalence

KW - Malaria, Falciparum

U2 - 10.1186/s12936-023-04487-5

DO - 10.1186/s12936-023-04487-5

M3 - Journal article

C2 - 36859238

VL - 22

JO - Malaria Journal

JF - Malaria Journal

SN - 1475-2875

M1 - 71

ER -

ID: 338160024